

XI Convegno Nazionale dei Giovani Ricercatori in Geologia Applicata Campus Universitario, Università della Basilicata, Matera, 19 – 20 Settembre 2019

Preliminary results on the comparison between empirical and physically-based rainfall thresholds for shallow landslides occurrence

Massimiliano Bordoni, Beatrice Corradini, Luca Lucchelli, Claudia

Meisina

massimiliano.bordoni@unipv.it

1. THE PROBLEM

• Rainfall-induced shalllow landslides: triggered by short-period but very intense rainfall events

- Triggering linked with the hydrological and mechanical response of a usually unsaturated soil to rainfall events
- Causing widespread damages to the terrain, infrastructure, as well as urban and rural developments
- High density of phenomena in little catchments

• Increase in their occurrence related to the increase of extreme rainfall events due to climate change (Gariano and Guzzetti, 2016; Ciabatta et al., 2017; Haque et al., 2019)

27th-28th April 2009 event in Oltrepò Pavese (1639 shallow landslides in about 250 km²)

2. BACKGROUND

Methodologies for the assessment of shallow landslides occurrence

- Uncertainties on the boundary conditions of the model

Bordoni et al., 2015

3. OBJECTIVES

Comparison of rainfall thresholds for the occurrence of shallow landslides at large scale (catchement, regional), realized by means of empirical-statistical and physically-based approaches

The work was realized in the frame of ANDROMEDA project, funded by Fondazione Cariplo and realized by University of Pavia and CNR-IRPI Perugia, which aims to develop a prototypal early-warning system for the assessment of shallow landslides and flood occurrence in Oltrepò Pavese area

Oltrepò Pavese area (720 km²)

• Representative of northern Italian Apennines

• Different geomorphological settings: steep slopes (>15-20°) and narrow valleys with marly, areanaceous, conglomeratic bedrocks - medium steep slopes (10-15°) and large valleys with marly, clayey and chaotic bedrocks

• Soil heterogeneity: clayey-sandy silts/silty sands with thickness around 1 m - silty clays with thickness > 1-1.5 m

• High susceptibility towards shallow landslides (density till > 50 landslides per km²)

• Three catchments representative of the typical geological and geomorphological settings: Ardivestra (medium steep slopes, clayey and chaotic bedrocks) Scuropasso-Versa (very steep slopes, marly, areanaceous, conglomeratic bedrocks)

Rain gauge network and shallow landslides inventory

Rain gauge network

- 21 stations (ARPA Lombardia, ARPAE Emilia Romagna, COPROVI)
- Rainfall data since 2000
- Hourly resolution

Shallow landslides inventory

• 143 triggering events since 2000

• Location of the phenomena: Google Earth, high resolution aerial images (April 2009 event), Pleiades images (2013 events), local and national newspapers, report of municipalities and province

Hydrological monitoring station Montuè test-site slope

 Past shallow landslides (27-28 April 2009, 28 February-2 March 2014)
Geological setting: sands and poorly cemented conglomerates overlying marls
Soils: silty clay with a thickness of about 1,3 m
Geomorphological features: steep slopes (26-30°), narrow

valley. Elevation: 185 m a.s.l.

Hydrological monitoring station

Montuè test-site slope

Device	Model	Range of measure	Accuracy
Heat Dissipation sensors	Model HD229 - Campbell Scientific	-10000 / - 10 kPa	1.5 – 2 kPa
Tensiometers	Model Jet-Fill 2725 - Soilmoisture Equipment Corporation	-80 / 10 kPa	1.5 – 2 kPa
TDR probes	DR probes Model CS610 - Campbell Scientific		0.01 − 0.02 m ³ ·m ⁻³

- Soil devices installed in a trench pit
- Data collection since 27/03/2012
- Temporal resolution: 10 minutes
- Datalogger (CR1000X, Campbell Scientific, Inc.) powered by a photovoltaic panel (20 W)

Empirical-statistical rainfall thresholds

ENTRY

Empirical-statistical rainfall thresholds

Empirical-statistical rainfall thresholds

Rainfall attributes measured by a particular rain gauge are representative of a triggering event if a shallow landslide occurred in that day in a radius of less than 10 km from the rain gauge

Physically-based rainfall thresholds

Physically-based rainfall thresholds Test-site: Montuè monitored slope

Representative of the study area:

- Past shallow landslides (27-28 April 2009, 28 February-2 March 2014)
- Susceptible geomorphological (steep slopes) and geological (siltyclayey soils) setting towards shallow landslides
- Detailed soil profile: shallow landslides sliding surface, geotechnical and hydrological properties
- Monitoring of pore water pressure: validation of the physically-based model

Parameter	Value	Unit	
ϑ_s	0.42	m³/m³	
ϑ _r	0.03	m³/m³	
ω	0.006	kPa ⁻¹	
Ks	1.5·10 ⁻⁶	m/s	
$oldsymbol{arphi}'$	33	o	
с'	0	kPa	
Y	18.3	kN/m³	
Z	1	1 m	
6	30	o	

Parameters used in the model for reconstructing physically-based thresholds: θ_s) saturated water content; θ_r) residual water content; ω) fitting parameter of soil water characteristic curve; K_s) saturated hydraulic conductivity; ϕ') soil friction angle; c') soil effective cohesion; γ) soil unit weight; z) soil depth; β) slope angle.

Empirical-statistical rainfall thresholds

Effect of the length of the dry periods to separate different events (P4 parameter) P4c (P4 cold periods): 7-1159 h

P4w (P4 warm periods): 3-504 h

P4_C	P4_W alfa		gamma	
7	3	3.3	0.4	
14	6	4.0	0.8	
24	10	5.3	0.29	
28	12	5.4	0.29	
36	15	5.6	0.27	
48	21	6.2	0.24	
55	24	5.6	0.26	
72	31	6.3	0.24	
83	36	6.7	0.23	
96	42	6.7	0.23	
110	48	7.1	0.21	
120	52	7.0	0.22	
166	72	6.8	0.22	
221	96	6.9	0.22	
240	104	6.8	0.23	
276	120	7.1	0.22	
336	146	6.7	0.23	
386	168	7.1	0.22	
504	219	6.9	0.23	
552	240	7.0	0.22	
720	313	7.0	0.22	
773	336	7.0	0.22	
1159	504	6.8	0.23	

Empirical-statistical rainfall thresholds

Features of the minimum rainfall features leaded to trigger landslides reconstructed through CTRL-T algorithm

Rainfall parameter	Minimum value	Maximum value	Mean value
Duration (h)	4	145	43
Cumulated amount (mm)	7.2	155	49.7

Average rainfall threshold

Significant amount of false positives

Physically-based rainfall thresholds

Good performance of the modeling sheme: effectiveness of the boundary conditions of the physically-based method to model synthetic rainfall events

Physically-based rainfall thresholds

Effect of different initial pore water pressure conditions in the soil

• No false positives

• Downrise of the threshold as a function of the increase in the initial soil pore water pressure conditions

Comparison between empirical-statistical and physically-based rainfall thresholds

Rainfall threshold	Alfa (-)	Gamma (-)	Event of 1 h - Cumulated amount required to trigger shallow landslides (mm)	Event of 12 h - Cumulated amount required to trigger shallow landslides (mm)	Event of 24 h - Cumulated amount required to trigger shallow landslides (mm)	Event of 48 h - Cumulated amount required to trigger shallow landslides (mm)
Empirical- statistical	6.1	0.07	>6.1	>8.2	>17.2	>21.2
Physically-based initial PWP=-20 kPa	271.1	0.01	>271.1	>277.9	>284.3	>288.3
Physically-based initial PWP=-10 kPa	180.0	0.01	>180.0	>186.7	>193.5	>197.5
Physically-based initial PWP=0 kPa	22.4	0.11	>22.4	>29.4	>34.3	>39.9

• Significant differences on the rainfall cumulated amount between different thresholds

• Significant effects of the initial pore water pressure on the cumulated amount required to trigger shallow landslides

• Low values of triggering rainfall for empirical-statistical thresholds

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

- Significant differences on the thresholds obtained through different methodologies
- Several false positives for threshold created through empirical-statistical approach
- Evident effects of initial pore water pressure on physically-based thresholds
- For the same duration of an event, low values of triggering rainfall for empirical-statistical thresholds

Future developments

Physically-based thresholds for other contexts (e.g. slopes with clayey soils)

□ Integration with rainfall data measured by satellites (e.g. GPM)

THANKS FOR THE ATTENTION

For more information on ANDROMEDA project:

- Claudia Meisina (Prinicipal Investigator) <u>claudia.meisina@unipv.it</u>
- Massimiliano Bordoni (Responsible of the communication) massimiliano.bordoni@unipv.it

Website: https://progettoandromeda.unipv.it/ E-Mail: andromeda@unipv.it

ProgAndromeda (https://www.facebook.com/ProgAndromeda-1922388478072055/?modal=admin_todo_tour)

@ProgAndromeda