

Technical Symposium / General

Assembly 2019 in Italy

Field measurements of hydrological conditions for shallow land-slide triggering in the Oltrepo' Pavese <u>C. Meisina¹</u>, M. Bordoni¹, R. Valentino², M. Bittelli³, S. Chersich¹,

¹ Department of Earth and Environmental Sciences, University of Pavia, Italy

- ² Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Italy
 - ³ Department of Agricultural Science, University of Bologna, Italy

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI SCIENZE AGRARIE

claudia.meisina@unipv.it

1 Introduction – The shallow landslides and their consequences

✓ **limited volume of soil** mobilized, but **severe damages** to cultivations, infrastructures, urban settlements, loss of human lives

 ✓ a continuous monitoring of unsaturated soil hydrological properties related to rainfall conditions is needed to understand the landslide triggering mechanisms.

1 Introduction – The shallow landslides in Oltrepo Pavese

27th-28th April 2009 Event in Oltrepò Pavese (1639 shallow landslides in about 250 km²)

2 Objective of the research

to test an integrated hydro-meteorological monitoring system for slopes prone to shallow landslides

1. to test different typologies of devices

- 2. to identify the main soil hydrological behaviors
- 3. to identify the shallow landslide triggering mechanisms

3 The monitored slopes

3 The monitored slopes 1. North-eastern Oltrepò Pavese

Montuè test-site slope

1) Past shallow landslides (27-28 April 2009, 28 February-2 March 2014)

2) Geological setting: sands and poorly cemented conglomerates overlying marls
3) Soils: silty clay with a thickness of about 1,3 m

4) Geomorphological features: steep
slopes (26-30°), narrow valley. Elevation:
185 m a.s.l.

3 The monitored slopes

Montuè test-site slope – 3d Model

3 The monitored slopes Calcic Gleysol (IUSS, 2007,

Multidisciplinary (pedological, mineralogical, geotechnical, mechanical) characterization of the test-site slope soils

	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	USCS	γ (kN/m ³)
С	0.2	12.3	12.5	53.9	21.3	CL	17.0
D	0.4	1.5	11.4	59.4	27.7	CL	16.7
Е	0.6	8.5	13.2	51.1	27.2	CL	16.7
F	1.0	2.4	12.2	56.4	29.0	CL	18.6
G	1.2	0.5	7.5	65.6	26.4	CL	18.3
R	1.4	0.2	75.0	24.8	0.0	-	18.1

3 The monitored slopes

Costa Cavalieri test-site slope

1) Past shallow landslides (6-8 february 2009, 18-20 January 2014)

- 2) **Geological setting**: clayey and clayey-marly deposits covered by silty clay (1.7 m)
- 3) **Geomorphological features**: Low gradient slopes (10-15°), large creek valleys

	Depth	Gravel	Sand	Silt	Clay	USCS	γ
	(m)	(%)	(%)	(%)	(%)		(kN/m³)
Ар	-0.10	1.00	2.30	42.20	54.50	СН	
Bw	-0.44	0.55	2.25	39.70	57.50	СН	18.7
BC	-0.80	0.55	2.25	45.70	51.50	СН	19.0
C1	-1.18	2.45	3.20	46.85	47.50	СН	
C2	-1.72	0.10	0.65	42.25	57.00	СН	

3 The monitored slopes

Costa Cavalieri test-site slope – 3d Model

4 The monitoring system

1. Montuè test-site slope

4 The monitoring system

2. Central Oltrepò Pavese

- pit
- Data collection since 27/11/2015
- Temporal resolution: 10 minutes

•datalogger (DL-6te, EM-50) powered by batteries

5.1 Results - Behaviour of devices

Montué station: required initial period in which sensors had to progressively adhere to the surrounding soil after installation

Costa Cavlieri station: shrinkage/swelling processes required initial period in which sensors had to progressively adhere to the surrounding soil after installation

Wetting

periods

swc (m^3/m^3) Rainfall (mm/h) 0.4 30 20 0.2 Ap -0.2 m Bss -0.4 m 10 Bss -0.6 m BCk -0.9 m 0.0 C2 -1.7 m 0 20 40 80 1 60 Time (h) Pore water pressure (kPa) 50 0 b) 40 -200 Rainfall (mm/h) 30 -400 Bss -0.4 m Bss -0.6 m 20 BCk -0.9 m -600 10 -800 0 20 40 60 80 1 Time (h) 0.6 S 2016/03/05 e) swc (m^3/m^3) Rainfall (mm/h) 0.4 -0.2 m -0.4 m ŝ -0.6 m -0.9 m 2 0.2 -1.7 m 0.0 0 12 24 Time (h) Pore water pressure (kPa) 10 2016/03/05 Rainfall (mm/h) S -0.4 m -0.6 m -0.9 m c 0 2 Ŷ -10 0 12 24 Time (h)

0.6 _a) 50

40

WETTING PHASE

DRYING PHASE

— wet period

--- dry period

wet period --> prologed rainy periods provoke an increase of pore water pressure and water content in soil horizons >0.7 m

perched water table at the interface between the shallow soil and the weathered bedrock

5.3 Results – Hydraulic non-equilibrium processes

dry period --> very rapid rewetting of the soil horizons < 0,7m summer rainstorm (>10mm/2h) --> increase of pore water pressure not coupled with an increase of the water content

5.4 Results – Hysteretic Soil Water Characteristic Curves

Water content (m^3/m^3)

Field – Hourly data	Drying					Wetting					
	$\frac{\theta_{sd}}{(m^3/m^3)}$	θ_{rd} (m ³ /m ³)	$\alpha_d \over (kPa^{-1})$	n _d (-)	RMSE (m ³ /m ³)	θ _{sw} (m ³ /m ³)	$\frac{\theta_{rw}}{(m^3/m^3)}$	α _w (kPa ⁻¹)	n _w (-)	RMSE (m ³ /m ³)	
C-M (0.2 m)-I cycle	0.33	0.02	0.006	1.51	0.0142	0.32	0.02	0.007	1.62	0.0146	
C-M (0.2 m)-II cycle	0,33	0.02	0.004	1.55	0.0167	0.32	0.02	0.007	1.62	0.0168	
C-M (0.2 m)-III cycle	0.33	0.01	0.002	1.57	0.0178	0.32	0.01	0.004	1.62	0.0173	
C-M (0.2 m)-IV cycle	0,33	0.01	0.002	1.61	0.0173	0.32	0.01	0.004	1.62	0.0154	
C-M (0.2 m)-All cydes	0.33	0.02	0.003	1.57	0.0163	0.32	0.02	0.007	1.62	0.0164	
E-M (0.6 m)-I cycle	0.40	0.01	0.012	1.38	0.0179	0.37	0.01	0.017	1.40	0.0177	
E-M (0.6 m)-II cycle	0.39	0.01	0.012	1.38	0.0126	0.37	0.01	0.017	1.40	0.0133	
E-M (0.6 m)-III cycle	0.40	0.01	0.014	1.38	0.0140	0.37	0.01	0.017	1.40	0.0133	
E-M (0.6 m)-IV cycle	0.40	0.01	0.012	1.38	0.0133	0.37	0.01	0.017	1.40	0.0143	
E-M (0.6 m)-All cycles	0.40	0.01	0.012	1.38	0.0137	0.37	0.01	0.017	1.40	0.0136	
G-M (1.2 m)-I cycle	0.43	0.01	0.013	1.16	0.0167	0.40	0.01	0.015	1,20	0,1070	
G-M (1.2 m)-II cycle	0.44	0.01	0.010	1.22	0.0127	0.40	0.01	0.011	1.23	0.0135	
G-M (1.2 m)-III cyde	0.43	0.01	0.010	1.21	0.0166	0.40	0.01	0.011	1.22	0.0124	
G-M (1.2 m)-IV cycle	0.44	0.01	0.010	1.24	0.0171	0.40	0.01	0.011	1.22	0.0121	
G-M (1.2 m)-All cycles	0.44	0.01	0.013	1.19	0.0158	0.40	0.01	0.014	1.21	0.0128	

Results – Shallow landslides triggering mechanism

5.6 Results – Role of antecedent soil moisture conditions in shallow landslides triggering

6.1 Results – Slope stability analysis at site-specific scale

Lu and Godt's model (Lu and Godt, 2008)

 $Fs = \frac{\tan\varphi'}{\tan\beta} + \frac{2c'}{\gamma z \sin 2\beta} - \frac{\sigma^s}{\gamma z} [(\tan\beta + \cot\beta)\tan\varphi']$

 ϕ '= friction angle of the soil β = slope angle c'= effective cohesion γ = unit weight z= depth σ ^s = suction stress

Montuè 28 February-2 March 2014 event

6.1 Results – Slope stability analysis at site-specific scale

Safety factor trends reconstructed using Lu and Godt's model since water content data between 18 January and 9 March 2014: a, b) cumulated rainfall amount of the period; c, d) suction stress modeled using MDC orMWC properties; and e, f) safety factor modeled using MDC or MWC properties.

6.1 Results – Slope stability analysis at site-specific scale

Safety factor trends reconstructed using Lu and Godt's model since pore water pressure data between 18 January and 9 March 2014: a, b) cumulated rainfall amount of the period; c, d) suction stress modeled using MDC or MWC properties; and e, f) safety factor modeled using MDC orMWC properties.

6.2 Results: Safety factor charts

6.2 Results: Safety factor charts

➢No significant differences considering or not hysteresis

6.3 Results – Slope stability analysis at catchment scale

TRIGRS-Unsaturated model (Baum et al., 2008)

Rainfall distribution

6.3 Results – Slope stability analysis at catchment scale Calibration of the model at site-specific scale

2) Estimated pore water pressure trend of 27-28 April 2009 event

3) Shallow landslides triggering zone assessment at monitored slope

6.3 Results – Slope stability analysis at catchment scale

Mean values of soil properties give the best results

b

40

40

d

7. Conclusions

• Simultaneous measurements of water content and pore water pressure are required to identify different soil hydrological behaviors and main shallow landslide triggering mechanisms

• Coupling different sensors (HD or MPS-6 sensors and tensiometers) allows to cover the entire range of variation of pore water pressure and identify complete soil hydrological behaviour

• Monitoring data allows to a better calibration and implementation of physically-based models, both at site-specific and catchement scale

Main problems and open question

- Soil devices installed in trench pit (slow collapse of the trench backfill)
- No data were acquired in periods of prolonged absence of solar light able to recharge the alimentation system through the solar panel.
- analysis of hydraulic non-equilibrium processes

8. Andromeda project

- <u>Aims</u>
- 1. Development and implementation of a hydrogeological model for the identification of the triggering moments shallow and areas of landslides and floods, using also satellite measures of rainfalls and soil water content
- 2. Prototypal Early Warning System Tool for shallow landslides and floods based on rainfall thresholds integrating rainfall and soil water content

 Principal Investigator: Prof. Claudia Meisina

claudia.meisina@unipv.it

 Responsible of the Dissemination plan: Dr. Massimiliano Bordoni

massimiliano.bordoni@unipv.it

8. Andromeda project

Official e-mail: andromeda@unipv.it

Website: https://progettoandromeda.unipv.it/

@ProgAndromeda

1922388478072055/?modal=admin_todo_tour

