UNIVERSITÀ DI PAVIA

Session NH3.1 - Space and time forecasting of landslides - 27 April 2021

vEGU21: Gather Online | 19-30 April 2021

An integrated model for prediction of shallow landslides at regional scale with the integration of satellite hydrological data

Massimiliano Bordoni¹, Valerio Vivaldi¹, Luca Brocca², Luca Ciabatta², Claudia Meisina¹

(1)University of Pavia, Department of Earth and Environmental Sciences, Pavia, Italy

(2) Research Institute for Geo-Hydrological Protection, National Research Council, Perugia, Italy

massimiliano.bordoni@unipv.it

1. THE PROBLEM

- Rainfall-induced shalllow landslides: triggered by short-period but very intense rainfall events
- Triggering linked with the hydrological and mechanical response of a usually unsaturated soil to rainfall events
- Causing widespread damages to the terrain, infrastructure, as well as urban and rural developments
- High density of phenomena in little catchments
- Increase in their occurrence related to the increase of extreme rainfall events due to climate change

2. BACKGROUND

Rainfall thresholds for the assessment of shallow landslides occurrence

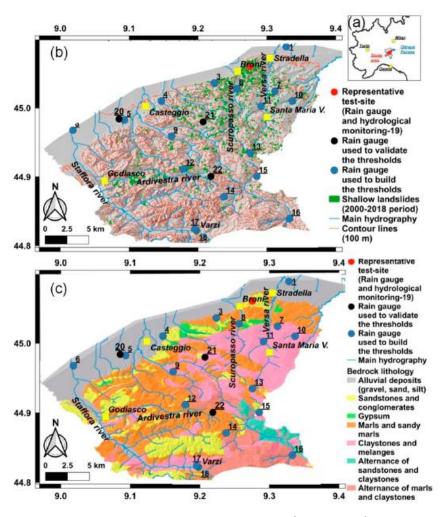
Empirical-statistical rainfall thresholds

- + Rainfall features representative of the triggering conditions
- + Easily to be implemented at regional scale
- Soil features and geomophological predisposing factors are not considered
- Uncertainties related to the quality and the amount of the rainfall data

Physically-based rainfall thresholds

- + Quantitative analysis of the rainfall triggering conditions leading to the triggering
- + Consideration of the soil hydrological and geotechnical parameters and of the geomorphological attributes
- + Analysis of change in time of stable/unstable areas
- Significant amount of input data, difficult to be implemented at large scale
- Uncertainties on the boundary conditions of the model

3. OBJECTIVES


Comparison of rainfall thresholds for the occurrence of shallow landslides at large scale (catchement, regional), realized by means of empirical-statistical and physically-based approaches

The work was realized in the frame of ANDROMEDA project, funded by Fondazione Cariplo and realized by University of Pavia and CNR-IRPI Perugia, which aims to develop a prototypal early-warning system for the assessment of shallow landslides and flood occurrence in Oltrepò Pavese area

Oltrepò Pavese area (720 km²)

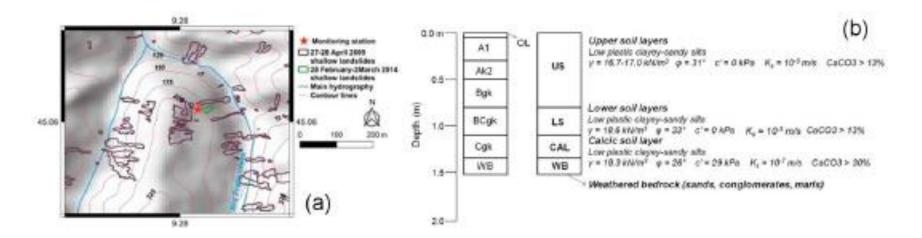
- Representative of northern Italian Apennines
- Different geomorphological settings: steep slopes (>15-20°) and narrow valleys with marly, areanaceous, conglomeratic bedrocks medium steep slopes (10-15°) and large valleys with marly, clayey and chaotic bedrocks
- Soil heterogeneity: clayey-sandy silts/silty sands with thickness around 1 m silty clays with thickness > 1-1.5 m
- High susceptibility towards shallow landslides (density till > 50 landslides per km²)
- Three catchments representative of the typical geological and geomorphological settings: Ardivestra (medium steep slopes, clayey and chaotic bedrocks) Scuropasso-Versa (very steep slopes, marly, areanaceous, conglomeratic bedrocks)

Bordoni et al., 2019

Rain gauge network and shallow landslides inventory

Rain gauge network

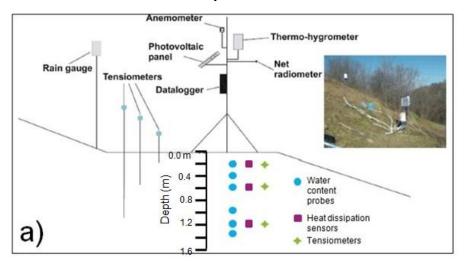
- 21 stations (ARPA Lombardia, ARPAE Emilia Romagna, COPROVI)
- Rainfall data since 2000
- Hourly resolution


Shallow landslides inventory

- 143 triggering events since 2000
- Location of the phenomena: Google Earth, high resolution aerial images (April 2009 event), Pleiades images (2013 events), local and national newspapers, report of municipalities and province

Hydrological monitoring station

Montuè test-site slope

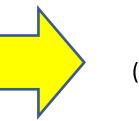

- 1) Past shallow landslides (27-28 April 2009, 28 February-2 March 2014)
- 2) Geological setting: sands and poorly cemented conglomerates overlying marls
- 3) Soils: silty clay with a thickness of about 1,3 m
- 4) Geomorphological features: steep slopes (26-30°), narrow valley. Elevation: 185 m a.s.l.

Bordoni et al., 2019

Hydrological monitoring station

Montuè test-site slope

Device	Model	Range of measure	Accuracy
Heat Dissipation sensors	Model HD229 - Campbell Scientific	-10000 / - 10 kPa	1.5 – 2 kPa
Tensiometers	Model Jet-Fill 2725 - Soilmoisture Equipment Corporation	-80 / 10 kPa	1.5 – 2 kPa
TDR probes	Model CS610 - Campbell Scientific	0.05 / 1.0 m ³ ·m ⁻³	0.01 – 0.02 m ³ ·m ⁻³


- Soil devices installed in a trench pit
- Data collection since 27/03/2012
- Temporal resolution: 10 minutes
- Datalogger (CR1000X, Campbell Scientific, Inc.) powered by a photovoltaic panel (20 W)

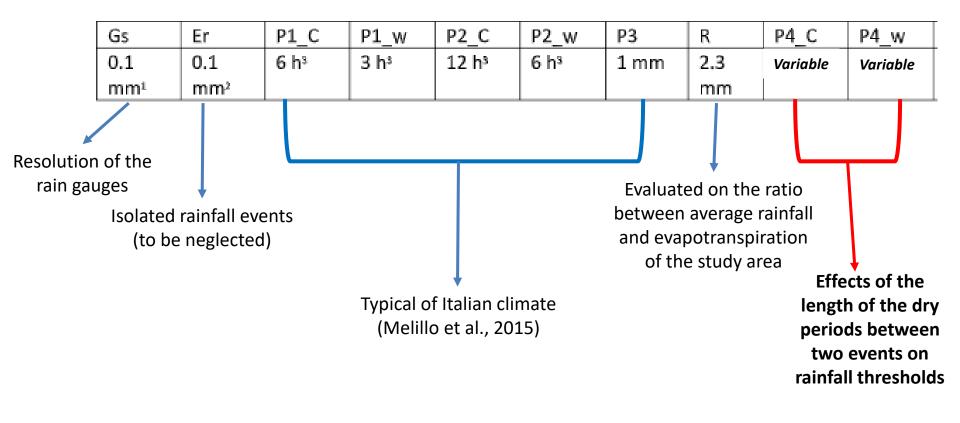
Empirical-statistical rainfall thresholds

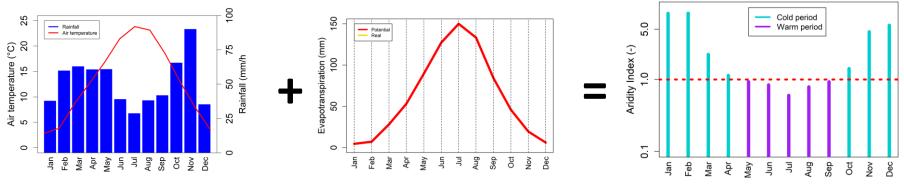
INPUT

- RAINFALL DATA
- LOCATION OF RAIN GAUGES
- LANDSLIDES INVENTORY

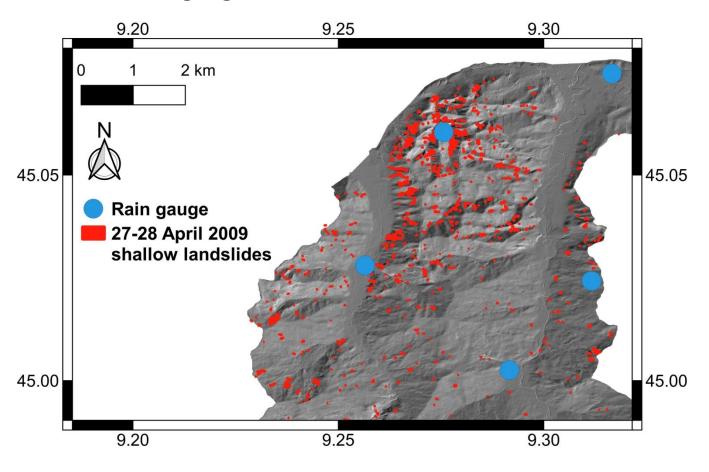
METHOD

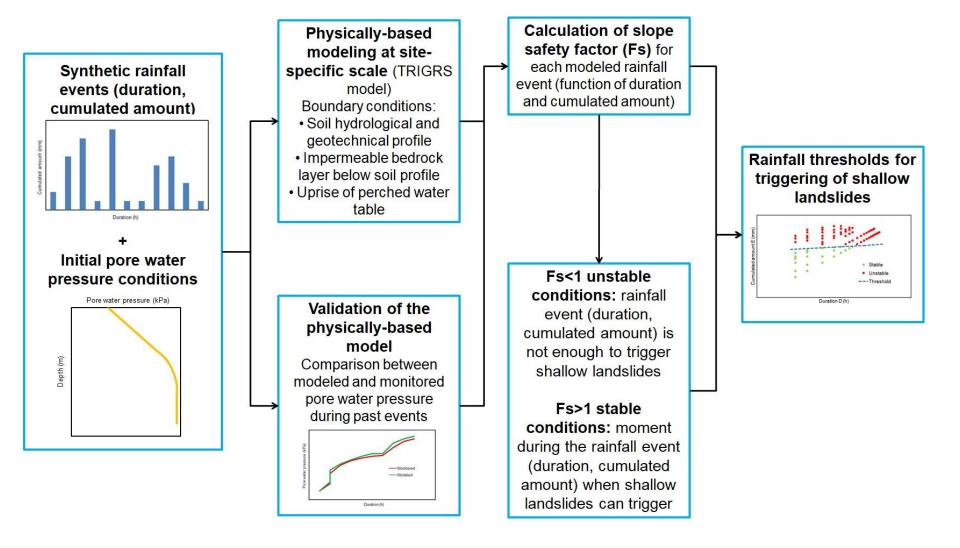
CTRL-T ALGORITHM (Melillo et al., 2015, 2018)


- RAINFALL EVENTS
- RAINFALL


 TRIGGERING
- CONDITIONS
- RAINFALL THRESHOLDS

(Melillo et al., 2015, 2018)


Empirical-statistical rainfall thresholds



Empirical-statistical rainfall thresholds

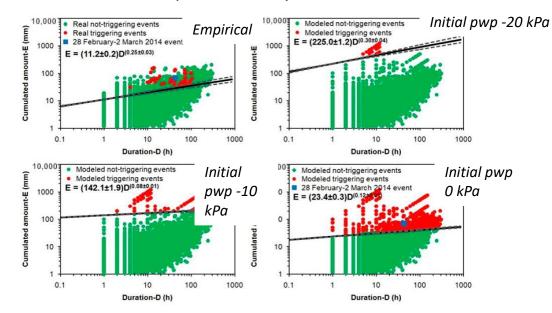
Rainfall attributes measured by a particular rain gauge are representative of a triggering event if a shallow landslide occurred in that day in a radius of less than 10 km from the rain gauge

Physically-based rainfall thresholds

Physically-based rainfall thresholds

Test-site: Montuè monitored slope

Representative of the study area:


- Past shallow landslides (27-28 April 2009, 28 February-2 March 2014)
- Susceptible geomorphological (steep slopes) and geological (silty-clayey soils) setting towards shallow landslides
- Detailed soil profile: shallow landslides sliding surface, geotechnical and hydrological properties
- Monitoring of pore water pressure: validation of the physically-based model

Parameter	Value	Unit
$oldsymbol{artheta}_{s}$	0.42	m³/m³
$\boldsymbol{\vartheta}_r$	0.03	m^3/m^3
ω	0.006	kPa ⁻¹
K_s	1.5·10 ⁻⁶	m/s
$oldsymbol{arphi}'$	33	o
c'	0	kPa
γ	18.3	kN/m³
Z	1	m
в	30	o

Parameters used in the model for reconstructing physically-based thresholds: θ_s) saturated water content; θ_r) residual water content; ω) fitting parameter of soil water characteristic curve; K_s) saturated hydraulic conductivity; φ') soil friction angle; c') soil effective cohesion; γ) soil unit weight; z) soil depth; β) slope angle.

6. RESULTS

Reconstruction (2007-2018)

Validation (1992-1996)

Threshold	TP (%)			FN (%)
Empirical thresholds	95 ± 2	76 ± 3	24 ± 3	5 ± 2
Physicallybased thresholds (-20 kPa) (TRIGRS/-20)	-	100 ± 0	0 ± 0	-
Physicallybased thresholds (-10 kPa) (TRIGRS/-10)	-	100 ± 0	0 ± 0	-
Physicallybased thresholds (0 kPa) (TRIGRS/0)	100 ± 0	93 ± 1	7 ± 1	0 ± 0

- •Significant differences on the rainfall cumulated amount for the same duration
- •Significant effects of the initial pore water pressure
- •Low values of triggering rainfall for empirical-statistical thresholds
- •Better estimation of rainfall triggering conditions since thresholds reconstructed through physically-based methods
- Significant amount of input data, difficult to be implemented at large scale

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

- Significant differences on the thresholds obtained through different methodologies
- Several false positives for threshold created through empirical-statistical approach
- Evident effects of initial pore water pressure on physically-based thresholds
- For the same duration of an event, low values of triggering rainfall for empirical-statistical thresholds

Future developments

☐ Physically-based	thresholds for	other contexts	(e.g.	slopes	with	clayey
soils)						

☐ Integration with rainfall data measured by satellites

8. REFERENCES

Bordoni M, Corradini B, Lucchelli L, Valentino R, Bittelli M, Vivaldi V, Meisina C (2019) Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of northern Italian Apennines. Water 11:2653.

Melillo, M.; Brunetti, M.T.; Perruccacci, S.; Gariano, S.L.; Roccati, A.; Guzzetti, F. A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ. Mod. Soft. 2018, 105, 230–243.

Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320.

THANKS FOR THE ATTENTION

For more information on ANDROMEDA project:

- Claudia Meisina (Prinicipal Investigator) <u>claudia.meisina@unipv.it</u>
- Massimiliano Bordoni (Responsible of the communication) <u>massimiliano.bordoni@unipv.it</u>

Website: https://progettoandromeda.unipv.it/

E-Mail: andromeda@unipv.it

ProgAndromeda (https://www.facebook.com/ProgAndromeda-1922388478072055/?modal=admin_todo_tour)

@ProgAndromeda